Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- coursera
- gettext_windows
- docker
- deeplearning.ai
- localization
- I18N
- Python
- gettext
- andrew ng
- AI
- 현지화
- 국제화
- internationalization
Archives
- Today
- Total
JMANI
Lecture 4: Q-learning (table) exploit&exploration and discounted reward by Sung Kim 본문
AI/Reinforcement Learning
Lecture 4: Q-learning (table) exploit&exploration and discounted reward by Sung Kim
jmani 2022. 5. 20. 10:22link: https://www.youtube.com/watch?v=MQ-3QScrFSI&list=PLlMkM4tgfjnKsCWav-Z2F-MMFRx-2gMGG&index=6
- 기존 Q-learning의 문제점: 경험했던 곳만 방문
- Exploit VS Exploration
- Exploit: 현재에 있는 값을 이용
- Exploration: 모험, 도전
Exploit VS Exploration: E-greedy
e값에 따라 랜덤하게 새로운 길로 모험
e = 0.1
if rand < e: # 10%의 확률로 랜덤하게 이동
a = random
else:
a = argmax(Q(s,a)) # 90%의 확률로 아는길로 이동
Exploit VS Exploration: decaying E-greedy
초반에는 랜덤하게, 뒤로 갈수록 아는 길로 이동
for i in range(1000):
e = 0.1 / (i+1) # 후반으로 갈수록 e값이 줄어듦
if random(1) < e:
a = random
else:
a = argmax(Q(s,a))
import gym
import numpy as np
import matplotlib.pyplot as plt
from gym.envs.registration import register
# Register Frozen with is_slippery False
register(
id='FrozenLake-v3',
entry_point='gym.envs.toy_text:FrozenLakeEnv',
kwargs={'map_name': '4x4', 'is_slippery': False}
)
env = gym.make('FrozenLake-v3')
"""E-greedy"""
# Initialize table with all zeros
Q = np.zeros([env.observation_space.n, env.action_space.n]) # 16, 4
# Discount factor
dis = 0.99
num_episodes = 2000
# create lists to contain total rewards ans steps per episode
rList = []
for i in range(num_episodes):
# Reset environment and get first new observation
state = env.reset()
rAll = 0
done = False
e = 1.0 / ((i//100)+1)
# The Q-Table learning algorithm
while not done:
# Choose an action by e greedy
if np.random.rand(1) < e:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
# Get new sate and reward from environment
new_state, reward, done, _ = env.step(action)
# Update Q-Table with new knowledge using learning rate
Q[state, action] = reward + dis * np.max(Q[new_state, :])
rAll += reward
state = new_state
rList.append(rAll)
print("Success rate: " + str(sum(rList)/num_episodes))
print("Final Q-Table Values")
print(Q)
plt.bar(range(len(rList)), rList, color="blue")
plt.show()
Exploit VS Exploration: add random noise
argmax에 랜덤한 노이즈 추가
무조건 랜덤하게 이동하는 E-greedy와 달리 random noise는 2, 3번째로 높은 argmax로 이동할 가능성이 큼
for i in range(1000):
a = argmax(Q(s,a) + random_values / (i+1))
Learning Q(s,a) with discounted reward
- 같은 보상을 받을 때, agent는 헷갈릴 수 있음
- 현재의 reward와 미래의 reward 중 현재의 reward가 더 중요함
- discounted reward: 미래의 reward에 gamma(0~1)를 곱해서 가치를 줄임
import gym
import numpy as np
import matplotlib.pyplot as plt
from gym.envs.registration import register
# Register Frozen with is_slippery False
register(
id='FrozenLake-v3',
entry_point='gym.envs.toy_text:FrozenLakeEnv',
kwargs={'map_name': '4x4', 'is_slippery': False}
)
env = gym.make('FrozenLake-v3')
# Initialize table with all zeros
Q = np.zeros([env.observation_space.n, env.action_space.n]) # 16, 4
# Discount factor
dis = 0.99
num_episodes = 2000
# create lists to contain total rewards ans steps per episode
rList = []
for i in range(num_episodes):
# Reset environment and get first new observation
state = env.reset()
rAll = 0
done = False
# The Q-Table learning algorithm
while not done:
action = np.argmax(Q[state, :] + np.random.randn(1, env.action_space.n) / (i+1))
# Get new sate and reward from environment
new_state, reward, done, _ = env.step(action)
# Update Q-Table with new knowledge using learning rate
Q[state, action] = reward + dis * np.max(Q[new_state, :])
rAll += reward
state = new_state
rList.append(rAll)
print("Success rate: " + str(sum(rList)/num_episodes))
print("Final Q-Table Values")
print(Q)
plt.bar(range(len(rList)), rList, color="blue")
plt.show()
'AI > Reinforcement Learning' 카테고리의 다른 글
Lecture 6: Q-Network by Sung Kim (0) | 2022.05.23 |
---|---|
Lecture 5: Q-learning on Nondeterministic Worlds! by Sung Kim (0) | 2022.05.20 |
Lecture 3: Dummy Q-learning (table) by Sung Kim (0) | 2022.05.19 |
Lecture 2: Playing OpenAI GYM Games by Sung Kim (0) | 2022.05.19 |
Lecture 1: RL 수업소개 (Introduction) by Sung Kim (0) | 2022.05.19 |
Comments